Test turbine at UMaine could be a glimpse into Maine’s offshore wind energy future

Habib Dagher, director of the UMaine Advanced Structures and Composites Center (front right), and Jake Ward, assistant vice president for research, economic development and governmental relations at UMaine (front left), stand with members of deep water offshore wind energy development team stand under a 121-foot turbine blade undergoing stress testing at the UMaine research facility on Friday, Dec. 7.
Nick McCrea | BDN
Habib Dagher, director of the UMaine Advanced Structures and Composites Center (front right), and Jake Ward, assistant vice president for research, economic development and governmental relations at UMaine (front left), stand with members of deep water offshore wind energy development team stand under a 121-foot turbine blade undergoing stress testing at the UMaine research facility on Friday, Dec. 7. Buy Photo
By Nick McCrea, BDN Staff
Posted Dec. 09, 2012, at 5:14 p.m.

ORONO, Maine — The man at the helm of Maine’s push to put 170 floating wind turbines in the Gulf of Maine by 2030 likens that effort to NASA’s space program.

Using that analogy, the wind turbine standing behind the University of Maine’s Offshore Wind Laboratory at the Advanced Structures and Composites Center’s could be compared to Explorer I, the first U.S. satellite launched into space.

That turbine, a one-eighth scale version of the turbines that would be used in the future offshore wind farm, will be floating in the Gulf of Maine next year, likely between April and August.

“We’re here at the beginning of an exciting era that could create a whole new industry in our state,” center Director Habib Dagher said Friday, standing under a 112-foot turbine blade that has been undergoing stress testing at the Offshore Wind Lab in recent months.

The turbine going into the water off Monhegan Island next year will be used to test control systems and sensors that would be used on the full-scale version.

“It basically will be able to sense the environment around it,” Dagher said.

Based on wind speed and direction, the turbine automatically turns and adjusts the angle of its blades to attain the most efficient use of the wind or avoid its full force if it grows too strong. The full-scale versions would be able to do the same thing.

A floating base for the turbine is in the works. Next year, the turbine parts will be taken to Cianbro in Brewer, where the pieces will be assembled and the floating turbine will be towed upright down the Penobscot River to its test site in the Gulf of Maine. Once in place, it will be hooked up to the power grid with an undersea cable, becoming the first grid-connected offshore turbine in the country.

The turbine design is called VolturnUS, a combination of the words volt, turn and U.S., a name that happens to be shared by Volturnus, the Roman god of the east wind.

After testing with the prototype is completed, a pair of 6-megawatt turbines will be installed by 2017 at a site called Aqua Ventus I. By 2020, that would grow to a larger-scale commercial wind farm with 80 turbines in a 4- by 8-mile space 20 miles offshore, over the horizon and neither visible nor audible from shore. By 2030, the goal is to have a full-scale wind farm of around 170 turbines operational and bringing 5 gigawatts of wind energy to Maine’s shore.

“It’s a crawl before you walk, walk before you run approach,” Dagher said.

Some offshore wind energy efforts in Europe, which has been involved in offshore wind since 1991, have struggled, resulting in lofty price tags and high energy costs. Turbines at other offshore wind farms need to have their bases driven into the seafloor, an expensive process. If a turbine needs work, it can be towed back to shore, where repairs will be less costly.

The more cost-effective floating wind farm approach should help keep electricity prices down to about 10 cents per kilowatt hour by 2020, which is competitive with other means of electricity production, Dagher said. Prior to that, the energy will be expensive by comparison.

To put the size of the turbine in perspective: The world’s largest commercial airliner, the Airbus A380 with its 260-foot wingspan, could rest on one blade of the turbine. The diameter of the blades’ rotation will be 500 feet and the distance from water level to the hub at the top of the tower will be about 300, Dagher said.

The Gulf of Maine has some of the strongest, most persistent winds on the East Coast. Every second, 600,000 pounds of wind will travel through the turbine — the equivalent of 264 Toyota Camrys driving through per second — according to Dagher.

More than 30 companies are collaborating on the project, and the UMaine team of students, staff, engineers and communications specialists working on the project is 140 strong on its own. The effort to get 20 gigawatts of offshore wind capability by 2030 could bring as much as $20 billion of private investment to Maine and create thousands of jobs, Dagher has said.

In June, Maine Gov. Paul LePage placed a hold on $40 million in bonds in an attempt to rein in state borrowing. On that list was about $7.3 million in funding for the offshore wind demonstration site. LePage has said the earliest he might consider releasing the funds is 2014.

Dagher said he respects the governor’s fiscal concern and that the composites center continues to court private capital investments to proceed with the project until funds are released.

Members of LePage’s administration have questioned the feasibility of the offshore wind project in the past. Kenneth Fletcher, director of the Governor’s Office of Energy Independence and Security, and James LaBrecque, owner of Flexware Control Technology in Bangor and a technical adviser to LePage, said in 2011 that they felt the energy costs would be significantly higher and that the wind project wouldn’t serve to reduce Maine’s dependence on fossil fuels.

“In my 40 years in the energy arena, I have learned two things: There are no silver bullets, and we’re almost out of blanks,” LaBrecque said at the time.

Tests have been underway since 2011 on a one-fiftieth scale turbine floating in a pool at the Offshore Wind Laboratory that simulates waves and winds. The model has been tested against 150 mph winds and 60-foot waves. Research into the economic, environmental and ecological effects of a floating wind farm have stretched further back.

The group has studied fishing grounds, migratory bird flight paths, shipping patterns and more in order to identify potential future homes for the wind farm that will result in minimal effect to other industries and the environment, accord to Dagher.

CORRECTION:

An earlier version of this story misidentified the position of someone quoted in the article. James LaBrecque has not served as a volunteer engineering adviser at the University of Maine for two years and has not worked at the university for several years before that, according to the university.

https://bangordailynews.com/2012/12/09/news/bangor/test-turbine-at-umaine-could-be-a-glimpse-into-maines-offshore-wind-energy-future/ printed on July 10, 2014