Custom Publication of the Bangor Daily News

Proton-beam therapy is new weapon in fight against prostate cancer

Posted May 10, 2012, at 3:30 p.m.

Imagine a prostate cancer therapy that has almost no side effects. Hospitals say it exists, and they’re vying to be among the first to offer it. Too bad the treatment may not work as well as advertised and could boost America’s already spiraling health-care costs.

The technology uses narrowly focused proton beams to deliver precisely targeted blasts of radiation. The particle beams are delivered by 500-ton machines in facilities that cost from $100 million to $200 million, and can require a football- field sized building to house. A typical treatment costs about $50,000, twice as much as traditional radiation therapy though it is usually covered by Medicare or private insurance.

For U.S. taxpayers and employers facing spiraling health- care costs, that’s a worry.

“Proton-beam therapy is like the death star of American medical technology; nothing so big and complicated has ever been confronted by the system,” said Amitabh Chandra, a health economist at Harvard University’s John F. Kennedy School of Government. “It’s a metaphor for all the problems we have in American medicine.”

Yet even though the machines are breathtakingly expensive, hospitals and for-profit clinics are in a race to build proton- beam facilities for their prestige, perceived benefits, and potential revenue. One machine can generate as much as $50 million in annual revenue, and new facilities are sprouting up around the country.

“It’s like a nuclear arms race now, everyone wants one,” said Anthony Zietman, a radiation oncologist at Boston’s Massachusetts General Hospital, which has had a proton-beam accelerator since 2001.

Proponents of the technology say it can zap cancerous tumors without damage to surrounding tissue. That’s a major benefit for the relatively small number of people who suffer from tumors of the spine, brain and eyes, where stray radiation may blind or paralyze, or in children who are more sensitive to radiation.

The therapy has even wider appeal for treating prostate cancer, a much more common disease, since existing treatment often causes rectal bleeding as well as impotence. More than 240,000 American men were diagnosed with prostate cancer in 2011, making it the nation’s most-diagnosed tumor, according to the American Cancer Society. Most of those men are potential candidates for proton-beam therapy.

“The easiest group to market to in the country is a group of men worrying about the functioning of their penis,” said Paul Levy, former head of Beth Israel Deaconess Medical Center in Boston.

The problem is that despite the push to build proton-beam facilities and the groundswell of enthusiasm for the treatments, it remains unclear whether the therapy does a better job of shrinking tumors or avoiding side effects than the far less costly traditional therapy. Clinical trials haven’t yet provided a clear picture proving the treatment’s worth for common tumors such as prostate cancer.

Lower rates of impotence, for one, are unlikely from the use of proton therapy because proton and traditional treatments deliver high doses of radiation to the nerves to the penis, Zietman said. So whether the pricey treatments will do a better job managing prostate cancer while also preserving sexual function is an open question.

Proton-beam therapy and traditional X-rays are equally effective at killing tumor cells. The debate is over side effects. Proton-beam therapy works by shooting intense, narrow beams into targeted areas of the body. Protons slow down as they travel deep in the body. Doctors can manipulate the speed of the atomic particles, allowing them to deposit most of their radiation as they come to a stop inside a tumor.

X-rays used in conventional radiation therapy are made up of photon beams that zip through a patient, exposing tissues along the way to excess radiation. While modern machines use multiple beams sculpted to intersect and concentrate high doses on a tumor, lower doses are spread over a much larger region.

The proton technology isn’t new, but only in recent years has it caught on. Loma Linda University Medical Center in Loma Linda, California, built the nation’s first hospital proton-beam accelerator in 1990, but the treatment became more viable after the American Medical Association granted proton therapy an insurance billing code in 2000, making reimbursement easier, said Allan Thornton, a radiation oncologist at Hampton University’s proton-beam center, which opened in August 2010. “That brought proton therapy out of the closet,” he said.

So far, 35,000 Americans have gotten proton-beam treatment and reimbursement payments from Medicare and insurance companies amount to only a small fraction of that paid out for traditional radiation therapy.

In 2010, the most recent year for which figures are available, Medicare spent $41.8 million on outpatient proton- therapy treatments, versus $1.06 billion for standard external- beam radiation.

The amount so far reimbursed for proton-beam therapy is small because most of the 10 existing facilities have been open only a short while. Another 10 facilities are slated to open within the next few years, according to Leonard Arzt, executive director of the National Association for Proton Therapy based in Silver Spring, Maryland. Dozens more hospitals and medical centers have expressed an interest in developing their own proton-beam facilities.

The bottom line for proton centers, said Sean Tunis, chief executive officer of the Center for Medical Technology Policy, and a former Medicare official, is that hospitals can afford to build them because they are “extremely favorably reimbursed” by Medicare and many private payers.

“The finances are favorable to put in a lot of these centers and treat a lot of prostate cancer even though there is no evidence prostate cancer is treated better with it,” he said.

A report on proton therapy done by the U.S. Agency for Healthcare Research and Quality in 2009 suggests the benefits aren’t clear. After studying 243 published articles on the therapy, the group said it found only a handful that compared proton therapy to the standard treatment, and that “no trial reported significant differences in overall or cancer-specific survival or in total serious adverse events.”

Recommend this article

SEE COMMENTS →